RGB Laser Posted on May 25, 2021 By Phil Jones Back to Glossary There are several benefits shared by all projectors that use lasers as a light source. First, laser-based light engines turn on within seconds of pressing the power button. There is no time wasted waiting for a lamp to warm up or cool down. Old mercury lamps can be damaged if unplugged before the cooling-down period ends. Laser-based light engines are incredibly reliable, lasting anywhere from 20k to 30k hours, and are mostly maintenance-free. Chances are, you would need to replace the entire projector long before the laser light engine fails. Laser light engines are incredibly bright compared to lamps and most LED-based light systems, so they would typically be the best option for projecting on large surfaces. There are typically three types of laser-light engine designs used by today’s projector manufacturers. How RGB Lasers Work The best solution is to utilize multiple RGB lasers instead of a phosphor wheel and filters to create clean primary colors. Multi-channel laser light engines tend to produce a wider color gamut, making them a perfect choice for installations that require color accuracy in their displayed content. In addition to much more accurate colors, because red, green, and blue light is produced by different lasers, a wider color gamut is also possible. Since the RGB laser wavelengths are specifically chosen to optimize the primary colors of red, green, and blue, a RGB laser projector has the ability to reproduce DCI-P3 or even the Rec. 2020 color gamut without the need for a color filter. Discrete RGB laser light engines are considered to be the best projector light source available, but this performance comes at a price. Laser projectors tend to be physically larger than other types of projectors and are also very expensive. These systems offer the best brightness, so for installations requiring a huge projection screen, this would be the best solution Back to Glossary